
Appendix 1.1

1. Definition of limit. Recall from course MATH10242 that we used
the definition of convergence of a sequence to test a given sequence
converges by assuming that an ε > 0 is given and then trying to find
an appropriate N . Similarly, we will check a given function has limit
L at a point a by assuming that some ε > 0 is given and then trying

to find an appropriate δ > 0.

a

L

L + ε

L - ε

(     )(     )

(a-δ, a)(a, a+δ)

2. Deleted neighbourhood. Proof of

(a− δ, a) ∪ (a, a+ δ) = {x : 0 < |x− a| < δ} .

Proof i) To prove (a− δ, a) ∪ (a, a+ δ) ⊆ {x : 0 < |x− a| < δ}.

Let x ∈ (a− δ, a) ∪ (a, a+ δ). This implies

=⇒ x ∈ (a− δ, a) or x ∈ (a, a+ δ) ,

=⇒ a− δ < x < a or a < x < a+ δ

=⇒ 0 < |x− a| < δ or 0 < |x− a| < δ.

i.e. in both cases 0 < |x− a| < δ. Hence (a− δ, a) ∪ (a, a+ δ) ⊆
{x : 0 < |x− a| < δ} .

ii) To prove {x : 0 < |x− a| < δ} ⊆ (a− δ, a) ∪ (a, a+ δ).

Assume x ∈ {x : 0 < |x− a| < δ} so 0 < |x− a| < δ. We have two
cases.

a) Assume x > a. Then x − a > 0 in which case |x− a| = x − a and
thus 0 < x − a < δ. Reinterpret this as x ∈ (a, a+ δ), which can be
weakened to x ∈ (a− δ, a) ∪ (a, a+ δ) .
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b) Assume x < a.Then x − a < 0 in which case |x− a| = a − x and
thus 0 < a − x < δ. Reinterpret this as x ∈ (a− δ, a), which can be
weakened to x ∈ (a− δ, a) ∪ (a, a+ δ) .

In both cases x ∈ (a− δ, a)∪ (a, a+ δ). Hence {x : 0 < |x− a| < δ} ⊆
(a− δ, a) ∪ (a, a+ δ) .

Combine the two set inclusions as

(a− δ, a) ∪ (a, a+ δ) = {x : 0 < |x− a| < δ} .

�

3. The triangle inequality.

Lemma For a, b ∈ R,

|a− b| ≥ ||a| − |b|| .

Proof Given a, b ∈ R use the triangle inequality within

|a| = |a− b+ b| ≤ |a− b|+ |b| ,

which rearranges to give

|a− b| ≥ |a| − |b| .

Alternatively, starting with b and not a,

|b| = |b− a+ a| ≤ |b− a|+ |a| = |a− b|+ |a| ,

which rearranges to give

|a− b| ≥ |b| − |a| .

We can combine these two lower bounds as

|a− b| ≥ ||a| − |b|| ,

where the right hand side is now always positive due to the modulus
sign. �
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4. Limits of polynomials We will see soon in the lectures that for a
polynomial p(x) we have limx→a p(x) = p(a). So when we are trying to
verify the ε - δ definition of limit here we need show that |p(x)− p(a)|
is small for x close to a. But when x = a then p(a) − p(a) = 0, i.e.
x = a is a root of p(x)− p(a). In turn this means that x− a is a factor
of p(x)−p(a), i.e. p(x)−p(a) = (x− a) q(x) for some polynomial q(x) .

This was seen above in the example

lim
x→2

(

x3 + x2 − 4x
)

= 4.

Here p(x) = x3 + x2 − 4x and p(2) = 4. So

p(x)− p(2) = x3 + x2 − 4x− 4 = (x− 2)
(

ax2 + bx+ c
)

.

Equating coefficients, a = 1, c = 2 and b = 3, and so q(x) = x2+3x+2.

5. Example 1.1.10 By verifying the ε - δ definition show that

lim
x→2

x2 + 2x+ 2

x+ 3
= 2.

Solution To verify this we need consider

x2 + 2x+ 2

x+ 3
− 2 =

x2 − 4

x+ 3
.

The numerator will always have a factor of x− a, here x− 2. (Why?)
In this case

x2 + 2x+ 2

x+ 3
− 2 = (x− 2)

x+ 2

x+ 3
.

We are bounding x− 2 by |x− 2| < δ. For our example assume δ ≤ 1
so |x− 2| < δ ≤ 1 becomes −1 < x − 2 < 1, i.e. 1 < x < 3. We have
to check that (x+ 2) / (x+ 3) is not too large in this interval.

Method 1. With linear polynomials on top and bottom it is easy to
write

x+ 2

x+ 3
=

x+ 3− 1

x+ 3
= 1−

1

x+ 3
.

Then

1 < x < 3 =⇒ 4 < x+ 3 < 6

=⇒
1

6
<

1

x+ 3
<

1

4

=⇒
3

4
= 1−

1

4
< 1−

1

x+ 3
< 1−

1

6
=

5

6
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Hence
∣

∣

∣

∣

x+ 2

x+ 3

∣

∣

∣

∣

<
5

6
,

and we can choose δ = min (1, 6ε/5) when verifying the ε - δ definition
of

lim
x→2

x2 + 2x+ 2

x+ 3
= 2.

Method 2. This method is overkill for such a simple rational function.
It is based on the observations that

max
[a,b]

f(x)

g(x)
≤

max[a,b] f(x)

min[a,b] g(x)
and min

[a,b

f(x)

g(x)
≥

min[a,b] f(x)

max[a,b] g(x)
,

as long as f(x) ≥ 0 and g(x) > 0 on [a, b].

For our example assume δ ≤ 1 so |x− 2| < δ ≤ 1 becomes −1 < x−2 <
1, i.e. 1 < x < 3. Then

x+ 2

x+ 3
≤

3 + 2

1 + 3
=

5

4
and

x+ 2

x+ 3
≥

1 + 2

3 + 3
=

1

2
.

This suggests we can choose δ = min (1, 4ε/5) when verifying the ε - δ
definition of

lim
x→2

x2 + 2x+ 2

x+ 3
= 2.

Check this is so.

6. Example 1.1.14 Prove by contradiction that

lim
x→0

sin
(π

x

)

does not exist.

Solution Assume for a contradiction that limx→0 sin (π/x) exists. Let
L = limx→0 sin (π/x).

Choose ε = 1/2 in the ε - δ definition of limit to find δ > 0 such that if
0 < |x| < δ then

∣

∣

∣
sin

(π

x

)

− L
∣

∣

∣
<

1

2
. (7)
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Choose n ∈ N so large that x1 = 2/(1 + 4n) < δ. For such x1 we have
that (7) holds while sin (π/x1) = 1 and so

|1− L| <
1

2
. (8)

Next choose n ∈ N so large that x2 = 2/(3 + 4n) < δ. For such x2 we
have that (7) holds while sin (π/x2) = −1 and so

|−1− L| <
1

2
, i.e. |1 + L| <

1

2
. (9)

We combine (9) and (8) using the triangle inequality as

2 = |1− L+ 1 + L| ≤ |1− L|+ |1 + L| <
1

2
+

1

2
= 1.

Contradiction, hence assumption false, thus limx→0 sin (π/x) does not
exist. �

I leave it to the student to write out this proof, changing sin (π/x) to
x/ |x| to show that

lim
x→0

x

|x|
does not exist.

7. Uniqueness of limits. In lectures it was shown that if limx→a f(x)
exists then it is unique. The x→ a can be replaced by any of x→ a+,
x→ a−, x→ +∞ or x→ −∞.

Example If limx→+∞ f(x) exists, then the limit is unique.

Solution Assume that for the function f the limit is not unique. Let
ℓ1 < ℓ2 be two of the different limit values (there may be more than
two). In the ε -X definition of limx→+∞ f(x) choose

ε =
ℓ2 − ℓ1

3
> 0.

Then from definition of limx→+∞ f(x) = ℓ1 we find X1 > 0 such that
x > X1 implies

|f(x)− ℓ1| < ε. (10)

Similarly, from the definition of limx→+∞ f(x) = ℓ2 we find X2 > 0
such that x > X2 implies

|f(x)− ℓ2| < ε. (11)
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Choose an x0 > max (X1, X2). For such a point both (10) and (11)
hold. Hence

|ℓ2 − ℓ1| = |ℓ2 − f(x0) + f(x0)− ℓ1|

≤ |ℓ2 − f(x0)|+ |f(x0)− ℓ1|

by the triangle inequality,

< ε+ ε by (10) and (11) ,

= 2ε

= 2 |ℓ2 − ℓ1| /3.

Dividing through by |ℓ2 − ℓ1| 6= 0 we get 1 < 2/3, a contradiction.
Hence the assumption is false and so, if it exists, limx→+∞ f(x) is
unique. �

I leave it to the student to check that, if it exists, then limx→−∞ f(x)
is unique.

8. I stated in the lectures that the ε− δ definition of limit at a and the al-
ternative definition were of limit in terms of sequences were equivalent.
I prove this now.

Theorem 1.1.11 For f : A→ R, A ⊆ R and a ∈ R,

lim
x→a

f(x) = L

iff for all sequences {xn}n≥1 for which xn 6= a for all n ≥ 1 and

limn→∞ xn = a we have

lim
n→∞

f(xn) = L.

Proof (⇐) We are assuming there exists L ∈ R such that for all
sequences {xn}n≥1 for which xn 6= a for all n ≥ 1 and limn→∞ xn = a we
have limn→∞ f(xn) = L. The proof continues by contradiction. Assume
that limx→a f(x) = L is false for this value of L. Symbolically this
means

∃ε > 0, ∀δ > 0, ∃x ∈ A : 0 < |x− a| < δ and |f(x)− L| ≥ ε. (12)

Because this assures us of the existence of a particular ε, call it ε0.
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Apply (12) repeatedly with δ = 1/n to find for each n ≥ 1 a point
xn ∈ A with 0 < |xn − a| < 1/n and |f(xn)− L| ≥ ε0. Because of
|xn − a| < 1/n we have that limn→∞ xn = L. Because of 0 < |xn − a| we
have that xn 6= a for all n ≥ 1. Hence, by our initial assumption we have
limn→∞ f(xn) = L. From the definition of convergence for a sequence
with ε = ε0/2, this means there exists N ≥ 1 such |f(xn)− L| < ε0/2
for all n ≥ N . Yet a deduction from (12) was that |f(xn)− L| ≥ ε0 for
all n ≥ 1. This contradiction means that our last assumption is false,
and so limx→a f(x) = L holds.

(⇒) Assume limx→a f(x) = L. Let {xn}n≥1 be a sequence for which
xn 6= a for all n ≥ 1 and limn→∞ xn = a. Let ε > 0 be given. From the
definition of limx→a f(x) = L we get that there exists δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− L| < ε. (13)

Choose ε = δ in the definition of limn→∞ xn = a to find N ≥ 1 such
that if n ≥ N then |xn − a| < δ. Since we are assuming xn 6= a for all
n ≥ 1 this gives 0 < |xn − a| < δ. Then, by (13), |f(xn)− L| < ε. So
we have shown that

∀ε > 0, ∃N ≥ 1, n ≥ N =⇒ |f(xn)− L| < ε.

That is, we have verified the definition of limn→∞ f(xn) = L. �
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