Appendix 1.1

1. Definition of limit. Recall from course MATH10242 that we used
the definition of convergence of a sequence to test a given sequence
converges by assuming that an € > 0 is given and then trying to find
an appropriate N. Similarly, we will check a given function has limit
L at a point a by assuming that some € > 0 is given and then trying
to find an appropriate § > 0.

(a-3, a)(a, a+d)

2. Deleted neighbourhood. Proof of
(a—d,a)U(a,a+0d)={x:0< |z —al <d}.

Proof i) To prove (a —d,a) U (a,a+9) C {x:0 < |z —a| < d}.
Let z € (a —0,a) U (a,a + ¢). This implies

— z€(a—46,a) or z€(a,a+9),

— a—-0<zx<a or a<z<a-+d

— O0<|z—al<d or 0<|z—a|<d.

i.e. in both cases 0 < |r —a| < §. Hence (a —d,a) U (a,a+9) C
{z:0< |z —a| <d}.

ii) To prove {z : 0 < |[x —a| < ¢} C (a —0,a) U (a,a +9).

Assume x € {z:0< |z —a| <d} s00 < |[xr—a|] <. We have two
cases.

a) Assume = > a. Then x —a > 0 in which case |z —a] =  — a and
thus 0 < © —a < 0. Reinterpret this as 2 € (a,a + 0), which can be
weakened to z € (a — d,a) U (a,a+6) .
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b) Assume = < a.Then z —a < 0 in which case |z —a| = a — 2 and
thus 0 < @ — 2 < J. Reinterpret this as € (a — d,a), which can be
weakened to z € (a — d,a) U (a,a+0).

In both cases x € (a — d,a) U (a,a + 0). Hence {x: 0 < |z —a] < §} C
(a —0d,a)U(a,a+9).

Combine the two set inclusions as

(a—d,a)U(a,a+0)={x:0<|x—al <d}.

. The triangle inequality.
Lemma For a,b € R,
o — b > |la] — [b]].
Proof Given a,b € R use the triangle inequality within
la| =la —b+b] < |a—b|+ |b],
which rearranges to give

@ —b| = |af —[b].

Alternatively, starting with b and not a,
b = [b—a+al <[b—al+]a] =|a—b]+]a],
which rearranges to give
o — 0] > [b] = a] .
We can combine these two lower bounds as
ja — bl = [a] —bl],

where the right hand side is now always positive due to the modulus
sign. |
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4. Limits of polynomials We will see soon in the lectures that for a
polynomial p(z) we have lim,_,, p(z) = p(a). So when we are trying to
verify the -6 definition of limit here we need show that [p(z) — p(a)]
is small for x close to a. But when x = a then p(a) — p(a) = 0, i.e.
r = ais a root of p(x) — p(a). In turn this means that x — a is a factor

of p(x) —p(a), i.e. p(x)—p(a) = (z — a) g(x) for some polynomial ¢(z) .
This was seen above in the example

lim (x3 + 22— 4x) = 4.

T—2
Here p(z) = 2 + 22 — 42 and p(2) = 4. So
p(z) —p2) =2°+2° —dz — 4 = (. — 2) (az® + bz + ¢) .
Equating coefficients, a = 1, ¢ = 2 and b = 3, and so q(z) = 2?+ 3z +2.
5. Example 1.1.10 By verifying the € -6 definition show that
%+ 22+ 2
m-——— =2
r—2 T + 3

Solution To verify this we need consider

x+3 x+3°

The numerator will always have a factor of © — a, here z — 2. (Why?)
In this case

24+ 2x+2 2_3:2—4

2492 2 2
x°+ 27 + _2:(90_2):154— ‘
T+ 3 r+3

We are bounding x — 2 by |z — 2| < §. For our example assume § < 1
so |t —2| <0 <1becomes —1 <x—2<1,ie 1<z<3 Wehave
to check that (x + 2) / (x + 3) is not too large in this interval.

Method 1. With linear polynomials on top and bottom it is easy to
write
r+2 x+3-1 ] 1

t+3  z+3 r+3
Then
l<r<3 = 4<2+3<6
SRR
6 z+3 4
~ o-tasdyani



Hence

T+ 2 - 5
x+3 6’
and we can choose 0 = min (1, 6e/5) when verifying the ¢-§ definition

of
x2+2x+2_2

11m
r—2 T + 3

Method 2. This method is overkill for such a simple rational function.
It is based on the observations that

fx) _ maxiu f(2)

_ f(z)
max < — and min
bl g(x) ~ mingp g(x) b g(x)

min[a,b] f (x)
max(q p] g(x) ’

>

as long as f(z) > 0 and g(x) > 0 on [a, b].

For our example assume § < 1so |z — 2| <0 < 1 becomes —1 < x—2 <
1,ie. 1 <2 < 3. Then

T+ 2 - 3+ 2
r+3 7343 2

T2 142 1
z+3 = 1+3

5
= Z and

This suggests we can choose § = min (1,4¢/5) when verifying the -4

definition of
24+ 2r 42
lim —— =2
r—2 T+ 3

Check this is so.

. Example 1.1.14 Prove by contradiction that

. . ™

lim sin | —

x—0 x
does not exist.

Solution Assume for a contradiction that lim, ,qsin (7/z) exists. Let
L = lim,_,sin (7/x).

Choose € = 1/2 in the - definition of limit to find ¢ > 0 such that if
0 < |z| < ¢ then

sin (g) - L‘ < % (7)
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Choose n € N so large that z; = 2/(1 + 4n) < §. For such x; we have
that (7) holds while sin (7/x;) = 1 and so

1
1-L| < 5 (8)

Next choose n € N so large that x5 = 2/(3 + 4n) < §. For such x5 we
have that (7) holds while sin (7/x2) = —1 and so

1 1

We combine (9) and (8) using the triangle inequality as

11
2:|1—L+1+Ly§|1—L|+|1+L\<§+§:1.

Contradiction, hence assumption false, thus lim,_,q sin (7/x) does not
exist. m

I leave it to the student to write out this proof, changing sin (7/x) to
x/ |x| to show that

. €T .
lim — does not exist.
x—0 ’{13|

. Uniqueness of limits. In lectures it was shown that if lim,_,, f(x)
exists then it is unique. The x — a can be replaced by any of x — a+,
r—a—,r — +00 0r xr — —o0.

Example If lim, ,, f(z) exists, then the limit is unique.

Solution Assume that for the function f the limit is not unique. Let
¢y < ly be two of the different limit values (there may be more than
two). In the £- X definition of lim, ., f(z) choose

b4
3

Then from definition of lim, . f(z) = ¢; we find X; > 0 such that
xr > X implies

> 0.

3

[f(z) — 4] <e. (10)

Similarly, from the definition of lim, o f(2) = ¢ we find Xy > 0
such that x > X5 implies

[f(z) —bof <& (11)
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Choose an zp > max (X7, Xs). For such a point both (10) and (11)
hold. Hence

[la — ]

e = f(zo) + f(z0) — 1]

6o = f(@o)| + | f(z0) — 4]
by the triangle inequality,

< e4¢ by (10) and (11),

= 2

= 2|l — 11| /3.

IN

Dividing through by [ls — ¢1] # 0 we get 1 < 2/3, a contradiction.
Hence the assumption is false and so, if it exists, lim, , o f(x) is
unique. |

[ leave it to the student to check that, if it exists, then lim, , ., f(z)
is unique.

. I stated in the lectures that the € — § definition of limit at a and the al-
ternative definition were of limit in terms of sequences were equivalent.
I prove this now.

Theorem 1.1.11 For f: A— R, ACR and a € R,

lim f(z) =L

T—ra

iff for all sequences {xn},~, for which x, # a for all n > 1 and
lim,,_oc T,, = @ we have

lim f(z,) = L.

n—oo

Proof (<) We are assuming there exists L € R such that for all
sequences {x, },~, for which z,, # a for all n > 1 and lim,,_,« , = a we
have lim,, o f(2,) = L. The proof continues by contradiction. Assume
that lim, ,, f(z) = L is false for this value of L. Symbolically this
means

Je>0,Vé6>0,Jx € A:0< |z —a|<dand |f(z)—L|>c. (12)
Because this assures us of the existence of a particular e, call it &.
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Apply (12) repeatedly with § = 1/n to find for each n > 1 a point
zr, € A with 0 < |z, —a|] < 1/n and |f(x,) — L| > &o. Because of
|z, — a|] < 1/n we have that lim,, ,~ z,, = L. Because of 0 < |z,, — a| we
have that x,, # a for all n > 1. Hence, by our initial assumption we have
lim,, o f(x,) = L. From the definition of convergence for a sequence
with € = ¢¢/2, this means there exists N > 1 such |f(z,) — L| < /2
for all n > N. Yet a deduction from (12) was that |f(x,) — L| > ¢ for
all n > 1. This contradiction means that our last assumption is false,
and so lim,_,, f(z) = L holds.

(=) Assume lim, ., f(z) = L. Let {z,},., be a sequence for which
x, # a for all n > 1 and lim,, o, x,, = a. Let € > 0 be given. From the
definition of lim, ., f(x) = L we get that there exists § > 0 such that

O<|z—a|<d=|f(x)—L| <e. (13)
Choose ¢ = ¢ in the definition of lim,, ., x, = a to find N > 1 such
that if n > N then |z, — a|] < §. Since we are assuming x,, # a for all

n > 1 this gives 0 < |z, — a| < 0. Then, by (13), |f(x,) — L| < e. So
we have shown that

Ve >0,dN > 1,n > N = |f(z,) — L| < e.

That is, we have verified the definition of lim,, ., f(z,) = L. [ |
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